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Ah$tract-Unsteady natural convection of a heat-generating fluid in the enclosures of a rectangular section 
with isothermal or adiabatic rigid walls is investigated numerically in the present work. Using the high- 
performance finite-difference scheme in the 2D stream function-vorticity formulation, developed by the 
authors, the peculiarities of convective heat transfer are studied in a wide range of thermal and geometric 
parameters for the laminar regime of fluid motion. Steady-state as well as oscillating solutions obtained in 

this work are compared with available numerical and experimental results of other researchers, 

INTRODUCTION 

Many problems of practical interest deal with buoy- 

ant flows in enclosures. Flows driven by temperature 
gradients have been studied extensively in many exper- 
imental and computational works. A comprehensive 
survey on this subject has been presented by Ostrach 

VI. 
A more complicated situation, where there are volu- 

metric energy sources in cavities with isothermal 
and/or adiabatic rigid walls, is also very important for 
applications. In the present work the peculiarities of 
laminar convective heat transfer in a heat-generating 
fluid layer are examined numerically with particular 
emphasis on nuclear reactor safety analysis. This 
problem has various formulations from the viewpoint 
of the geometry of the domain under consideration 
(cylindrical, hemispherical, horizontal layer, etc.) as 
well as in terms of imposed boundary conditions (iso- 
thermal or adiabatic). A comprehensive review of 
different formulations and the re&lts obtained is pre- 
sented in ref. [2]. Some preliminary results have been 
obtained by the authors of the present work for cylin- 
drical and hemispherical enclosures [3]. In the pres- 
ent work this problem is considered for an enclosure 
of rectangular section with uniform isothermal or 
thermally insulated rigid walls. Such a formulation 
agrees with the measurement conditions [4-71, as well 
as with the formulation of numerical [8, 91 and com- 

i Author to whom correspondence should be addressed. 

bined numerical-experimental [lo] works, which 
allow us to employ some of the results of these re- 
searches for the verification of the accuracy of the 
mathematical model used in our calculations and 
for the validation of the prediction reliability. 

The urgency of the problem results from the necess- 
ity to predict correctly the behaviour of a molten heat- 
generating corium for various hypothetical accident 
scenarios in a pressurized water reactor (PWR). The 
situation where a molten corium flowed down to the 
bottom of a PWR vessel and buoyancy-driven corium 
flow occurred can be considered as an example of such 
scenarios. The accident at the Three Mile Island NPP 
in the U.S.A. developed in an approximately similar 
way. 

GOVERNING EQUATIONS 

Laminar natural convection of a heat-generating 
fluid with uniform volumetric energy sources is gov- 
erned by an energy equation and unsteady Navier- 
Stokes equations with the Boussinesq approximation 
for buoyancy. In the temperature-vorticity-stream 
function formulation for the 2D case these equations 
can be written in the following dimensionless form : 
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NOMENCLATURE 

c 

YP 

specific heat [J kg-’ K-‘I X dimensionless horizontal coordinate, 

gravitational acceleration [m s-7 XIH 
H cavity height [m] X horizontal coordinate [m] 

k thermal conductivity [W rn-’ K-‘1 Y dimensionless vertical coordinate, Y/H 
I tangential direction to a wall Y vertical coordinate [m]. 
L cavity length [m] 
n-l 

n 
NU 

RU 

s 

T 

TW 
u 
u 
V 

V 

isolines number 
normal direction to a wall 
local modified Nusselt number, 
q,l(.M = - (grad Q), 
average Nusselt number [equation (S)] 
Prandtl number, v/cl 
local heat flux on the boundary surface, 
-k(grad T) [w m-‘1 
modified Rayleigh number, 

(&H’)l(avk) 
rate of volumetric heat generation 
[W m-‘1 
temperature [K] 
fixed temperature on the walls [K] 
dimensionless horizontal velocity, UHjv 
horizontal velocity [m s-‘1 
dimensionless vertical velocity, VH/v 
vertical velocity [m s-‘1 

Greek symbols 
thermal diffusivity, k/(pc,) [m’ s-‘1 

; th ermal expansion coefficient [I(-‘] 
t, dimensionless temperature, 

(T- T,)l(sH’lk) 
V kinematic viscosity [m’ s-‘1 

P density [kg mm31 
z dimensionless time, tv/H2 
$ dimensionless stream function, Y/(vH) 
Y stream function 

E 
dimensionless vorticity, QD2/v 
vorticity. 

Subscripts 
W wall 
TOP top wall 
LFT left wall. 

ati a* u=- o=-- 
aY dX 

where IZ denotes the normal to the corresponding wall. 
(4) From equations (l)-(4) at prescribed boundary 

. _ 
where @, w, $, M and v stand for the dimensionless 
temperature, vorticity, stream function, horizontal 
and vertical velocity components, respectively; x, y 
are dimensionless Cartesian coordinates and 7 is the 
dimensionless time. Pr (v/a) is the Prandtl number ; 
Rn [(g/?sH’)/(cwk)] is the modified Rayleigh number, 
based not on the reference temperature difference but 
on the volumetric heat generation value, since the 
temperature difference is unknown a priori in this 
problem. Uniformly distributed internal heat sources 
are considered in the problem. Normalization is done 
here via the cavity height H, the kinematic viscosity v 
and the value sH’/k, proportional to a temperature 
difference. Three-dimensional and turbulent effects 
are neglected in this study. 

A iiow domain is an enclosed rectangular cavity 
with the fixed rigid walls and the following boundary 
conditions : 

no-slip, no-permeability conditions for the velocity 
vector : 

isothermal or adiabatic thermal conditions : 

conditions and the aspect ratio we can obtain numeri- 
cal solutions for various Rayleigh and Prandtl 
numbers. The quiescent state 0 = w = ti/ = 0 was used 
as the initial condition for the time integration in all 
predictions. 

NUMERICAL METHOD 

A common drawback of most commonly used 
numerical algorithms based on the stream f&ction- 
vorticity formulation is an explicit evaluation of the 
vorticity on no-slip rigid walls that induces an essential 
restriction on a time-step [I I]. To solve equations of 
convective heat transfer (l)-(4) with boundary con- 
ditions (5) and (6), a new efficient finite-difference 
technique [ 12, 137 has been developed and employed. 
Let us briefly discuss its primary merits. A new addi- 
tive implicit difference scheme based on the operator- 
splitting technique [14, 151 has been developed and 
applied in the present study. Boundary values of the 
vorticity are calculated completely implicitly in this 
approach. The scheme is unconditionally stable for 
linearized equations, i.e. a time-step does not depend 
practically on a spatial grid and is evaluated only from 
the temporal accuracy constraint for the nonlinear 
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phenomena considered. Further, convective terms are 
approximated via special second-order formulae 
based on the central differences. By so doing, we can 
obtain accurate results on enough coarse grids. 
Finally, in our predictions we employ modern high- 
performance iterative solvers of preconditioned con- 
jugate gradient type which have a very high con- 
vergence rate and are capable of solving equations 
without diagonal dominance. All these peculiarities of 
the numerical method provide the possibility of solv- 
ing complex transient physical problems on personal 
computers such as an IBM AT 486. More details of 
this method are available in refs. [ 12, 131. 

The uniform grid used in the calculations was 
40 x 40 steps for H/L = 1 and increased in the hori- 
zontal direction in proportion to the increase in the 
size of the rectangular cavity in that direction. The 
sufficiency of grids employed in our predictions was 
validated via preliminary comparative calculations on 
more fine grids derived by means of dividing in two 
(for instance, 80 x 80 and 160 x 160 grids have been 
used in theagrid validation procedure for a square 
cavity). Steady-state solutions (if they exist) have been 
obtained as a limit of a time-evolution process. The 
temporal accuracy of periodic solutions was verified 
on predictions with various time-steps. 

RESULTS AND DISCUSSION 

Free convection of a heat-generating fluid has been 
studied extensively in a great number of experimental 
[47] as well as numerical [8-lo] works. Data pre- 
sented in them have been used where it was possible 
to verify our mathematical model and numerical 
results. A comprehensive verifying and validation of 
our numerical method on the problems with internal 
heat sources as well as further parametrical inves- 
tigations have been performed for rectangular enclos- 
ures in the following range of parameter values : 

Rayleigh number : 10’ < Ra < lo8 ; 
aspect ratio : 0.25 Q H/L < 1. 

The Prandtl number was fixed in all calculations at 
Pr = 7. Various thermal boundary conditions have 
been considered : the case with all isothermal walls ; 
next, a configuration with isothermal horizontal and 
adiabatic side walls ; finally, the variant with iso- 
thermal top and insulated other surfaces was inves- 
tigated, too. The range of parameters considered in 
our predictions is very close to’regimes studied exper- 
imentally in refs. [4, 6, 7, lo] for salt water heated by 
an alternating electric current. 

At the beginning of this work a verification of the 
developed numerical method has been made on the 
basis of experimental and calculated data for the given 
class of problems. Detailed measurements [7] and cal- 
culations [9] form the basis for such a comparison. 
These results have been obtained for the cavity of 
square section (aspect ratio equals to 1) with all four 
rigid walls isothermal. It should be noted that the 

following relations take place due to some distinction 
in the normalization procedure : Ra [7, 91 = Ra/64, 9 
[7,9] = 8% and Nu [7,9] = 4Nu. The chosen range of 
Rayleigh numbers corresponds to laminar steady or 
unsteady periodical flow regimes. 

The results of the calculations are given in Figs. l-- 
13 in the following form. Flow patterns and tem- 
perature fields are presented via streamlines and iso- 
therms, respectively. The contour values are defined 
equidistantly between the function extremums as fol- 
lows (for instance, for the stream function) : 

$1 = ~mx-(~nl&-!klnY(~+ 1) i = 1, m. (7) 

As a rule, the isolines number m was equal to 18 for 
the stream function and 8 for the temperature. As for 
the temporal histories of the heat transfer process, the 
plots show the maximum temperature %,,X and the 
average Nusselt number Nu for the corresponding 
surface, defined as 

L 
Nu = l/L Nudl 

s 0 
(8) 

where 1 denotes the x- or y-coordinates along the 
corresponding wall. 

Figure 1 presents the calculated steady-state regime 
for Ra = 6.4 x 105. A fluid circulates in the square 
cavity as two symmetrical counter-rotating rolls, mov- 
ing upward at the center of the cavity and downward 
near the cold side walls. Two local temperature max- 
ima are shifted upward to the side walls. 

As obtained in the previous works, the structure 
of thermal and hydrodynamic fields becomes more 
complicated with the increase in Rayleigh number 
to 3.2 x 10’ (see Fig. 2). Two additional secondary 
vortices occur near the top wall, leading to the appear- 
ance of a downward-moving how near the centerline 
in the vicinity of the upper surface. Such a change in 
the vertical velocity sign at the centerline in the upper 
part of the cavity for this Rayleigh number is con- 
firmed by experimental [5, 71 as well as numerical [9] 
data. Due to the four-vortex structure of the flow, two 
local temperature maxima occur in the flow bulk and 
two thermal flux maxima appear at the upper surface. 
Moreover, the flow in such a regime becomes period- 
ically oscillating, which can be clearly seen in our 
calculations. This fact has also been obtained by pre- 
dictions [9], but has not been observed with measure- 
ments [7]. Instantaneous flow patterns and thermal 
fields are depicted in Fig. 2 for two moments of the 
period. One of them demonstrates a practically sym- 
metric solution whereas the second shows that sym- 
metry is disturbed in the vicinity of the upper surface 
due to shifting of secondary vortices in the upper part 
of the cavity. 

Time variations of the temperature maximum and 
average Nusselt numbers through the top and left 
surfaces of the cavity for this Rayleigh number are 
shown in Fig. 3. A comparison with similar periodic 
results [9] demonstrates a good agreement in the 
character of oscillations, but our results provide a 
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Fig. 1, Steady-state flow pattern and thermal field, Ra = 6.4 x 10’. 
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Fig. 2. Periodic oscillations, Ra = 3.2 x 106. 
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Fig. 3. Temperature maximum and NU through the top and left surfaces vs time, Ra = 3.2 x 106. 

larger period value and a smaller oscillation ampli- 
tude. At the same time time-averaged values of Q,,, 
obtained by our predictions are closer to experimental 
data (discrepancy less than 3%) than the above-men- 
tioned calculations. It should be noted that, with 
increasing Rayleigh number, the value of 0,,, is 
reduced. 

Oscillations become more pronounced at higher 
Rayleigh numbers. Starting from Ra = lo8 the flow 
becomes random fluctuating (see Fig. 4), which indi- 
cates a possible transition from the laminar to the 
turbulent regime. The range of Rayleigh number for 
the steady-state flow regime as well as for the periodic 
one were found to be practically the same as have 
been obtained numerically in ref. [2] for a hemi- 
spherical cavity of unit radius. 

Similar results have been obtained for lower aspect 
ratio cavities, too. At low Rayleigh numbers the flow 
is also steady-state and shows a two-cell symmetric 
structure, but the values of the temperature maximum 
and average Nusselt numbers are higher compared to 
the square cavity. With increasing Rayleigh number 
periodical oscillations of all basic parameters occur 
again. At the same time, for both H/L = 0.5 and 0.25 
the transition to periodic oscillations and random 
fluctuations occurs even at Ra = 5 x lo5 and 107, 
respectively, i.e. these two critical values of Rayleigh 
number are both lowered by a factor of approximately 
10. The oscillating flow for Ra = 5 x IO5 and 
H/L = 0.5 is shown in Fig. 5. There are only two 
slightly-oscillating vortices in this case, which provides 
a practically constant O,,, but periodically varying 
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0.22 

Fig. 4. Randonr fluctuating solution, Ra = IO’. 

average Nusselt numbers for the upper and left sur- 
faces (see Fig. 6). At higher Ra values two main vor- 
tices break down into a multicellular structure due 
to a cavity low aspect ratio that is typical for free 
convection in thin layers. Figure 7 presents such a 
multicellular structure for the oscillating flow in the 
cavity with aspect ratio H/L = 0.25 and Ru = 106. 
The main tendency of the heat transfer evolution is 
conserved : with increasing Rayleigh number the aver- 
age Nusselt number through the upper surface also 
increases but the maximum temperature value 
decreases. 

The cases of two (side) and three (side and lower) 
adiabatic boundaries have also been studied for an 
aspect ratio equal to 0.5. The main regularity for both 

these formulations is the same as was found for the 
previous (isothermal) case with this aspect ratio, 
namely, starting from Ra = 5 x 10’ thermal and 
hydrodynamic fields become periodically oscillating, 
whereas the random fluctuation regime begins at 
Ra FZ 107. However, oscillations observed with these 
boundary conditions are much weaker. 

The steady-state solution for the cavity with two 
thermally insulated sides at Ra = 10’ is presented in 
Fig. 8. The solution is fundamentally different kind 
from the same regime with all boundaries isothermal 
(see Fig. 5 with similar Ra value for a comparison). 
There are already four vortices in this flow pattern. 
Moreover, the fluid circulates in the diametrically 
opposite direction: downward at the symmetry line 
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'MAX = 1.30, QJMMIN =-I.30 

eMAX = 7.09x10-2 

z = 25. 
Fig. 5. Slightly-oscillating regime, Ra = 5 x lo5 

and upward between large and small rolls (it is clearly 
visible from the isotherm structure). Very weak oscil- 
lations occur at Ra = 5 x lo*, i.e. the solution is prac- 
tically quasi-steady with the structure depicted in Fig. 
9. This prediction is in a good agreement with data 
for computational and real experiments [lo] obtained 
for Ra = 7 x 105. Only at Ra = lo6 do oscillations 
become more pronounced (see Figs. 10 and 11) due 
to the fact that convective motion is decomposed into 
evolving vertical cells of different size. 

It was found that a further change in thermal con- 
ditions at the bottom into adiabatic ones slightly 
smooths the spatial nonuniformity of the hydro- 
dynamical field (decreases the number of vortices), 
but as a whole it does not affect considerably the main 
features of convective heat transfer. A typical solution 
for this problem is depicted in Figs. 12 and 13 for 
Ra = 106. Obviously, a further reduction in oscillation 
amplitude takes place for thermal parameters in this 

flow regime compared to similar predictions with two 
adiabatic sides (see Figs. 10 and 11). 

CONCLUSIONS 

A new numerical algorithm developed by the 
authors to solve convective heat transfer problems 
demonstrates high accuracy and efficiency properties 
when applied to problems with internal heat gener- 
ation. A comprehensive comparison with numerical 
and experimental results of various authors indicates 
that with the help of this method it is possible to obtain 
correct numerical results for this very important class 
of thermal problems. New temporal and spatial 
dependencies of heat transfer are obtained on the basis 
of this method for a rectangular cavity with a heat- 
generating fluid in a wide range of thermal and geo- 
metric parameters. For various aspect ratios ranges 
of Rayleigh number are obtained for steady-state and 
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Fig. 6. Temporal variations of thermal parameters, Ra =‘ 5 x 105. 
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Fig. 7. Multicellular oscillating regime, Ra = 10”. 
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Fig. 8. Steady-state solution for adiabatic sides, Ra = 105. 
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Fig. 9. Weak oscillations, Ra = 5 x 10’. 
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Fig. 10. Oscillating heat and fluid flow, Ra = 10”. 
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Fig. 12. Oscillations for adiabatic sides and bottom, Ra = 106. 
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Fig, 13. Histories of the heat transfer process, Ra = 106. 
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oscillating flow regimes. It was found that flow in a 
square cavity becomes periodically oscillating “,t 
Ra = 3.2 x IOh and random fluctuating at Ra = 10 , 
respectively. On decreasing aspect ratio to 0.25 the 
critical Rayleigh numbers corresponding to the tran- 
sition to the periodical regime as well as the random 
fluctuation are both reduced by a factor approxi- 
mately of 10. A change of boundary conditions at the 
sides and bottom from isothermal to adiabatic leads 
to some depression of the oscillation amplitudes, hnt 
gives the same ranges of the Rayleigh number for 
steady and periodic regimes. 

Acknowledgement-The authors are grateful to Dr A. G. 
Popkov for helpful discussions. 

REFERENCES 

S. Ostrach, Natural convection in enclosures, ASME J. 
Heat Transfer 110, 1175-l 190 (1988). 
K. M. Kelkar, R. C. Schmidt and S. V. Patankar, 
Numerical analysis of laminar natural convection of an 
internally heated fluid in a hemispherical cavity, Pro- 
ceedings of National Heat Transjtir Conference, pp. 355- 
364. San Diego, CA (1992). 
L. A. Bolshov, R. V. Arutyunyan, A. G. Popkov, V. V. 
Chudanov, P. N. Vabishchevich and A. G. Churbanov, 
Numerical study of natural convection of a heat-gen- 
erating fluid in nuclear reactor safety problems, Sub- 
mitted to the 4th International Topical Meeting on 
Nuclear Thermal Hydraulics, Operations and Safety, 5- 
8 April 1994, Taipei. 
F. A. Kulacki and R. J. Goldstein, Thermal convection 
in a horizontal fluid layer with uniform volumetric 
energy sources, J. Fluid Mech. 55,271-287 (1972). 

5, R, Farbadieb and R. S. Tankin, Interferometric study 
of two-dimensional Benard convection cells, J. Fluid 
Mech. 66,739-752 (1974). 

6. F. A. Kulacki and A. A. Emara, Steady and transient 
thermal convection in a fluid layer with uniform volu- 
metric energy sources, J. FluidMech. 83,375-395 (1977). 

7. J.-H. Lee and R. J. Golstein, An experimental study on 
natural convection heat transfer in an inclined square 
enclosure containing internal energy sources, ASME J. 
Heat Transfer 110,345-349 (1988). 

8. A. A. Emara and F. A. Kulacki, A numerical inves- 
tigation of thermal convection in a heat-generating fluid 
layer, ASME J. Heat Transf&r 102,531-537 (1980). 

9. H.-O. May, A numerical study on natural convection in 
an inclined square enclosure containing internal heat 
sources, ht. J. Heat Mass Transfer 34, 919-928 (1991). 

10. M. Jahn and H. H. Reineke, Free convection heat trans- 
fer with internal heat sources : calculations and measure- 
ments. Proceedings of 5th International Heat Transfer 
Conference, pp. 7478. Tokyo (1974). 

11. P. J. Roache, Computational Fluid Dynamics. Hermosa, 
Albuquerque, NM (1976). 

12. P. N. Vabishchevich, M. M. Makarov, A. G. Popkov, 
V. V. Chudanov and A. G. Churbanov, Numerical solu- 
tion of hydrodynamics problems in the stream function- 
vorticity formulation. Preprint of Institute for Math- 
ematical Modeling, Russian Academy of Sciences No. 
22, Moscow (1993) (in Russian). 

13. P. N. Vabishchevich. M. M. Makarov. V. V. Chudanov 
and A. G. Churbanov, Numerical simulation of con- 
vective flows in the stream function-vorticity-tem- 
perature formulation, Preprint of Institute for Math- 
ematical Modeling, Russian Academy of Sciences No. 
28, Moscow (1993) (in Russian). 

14. A. A. Samarskii, Theory of Difference Schemes. Nauka 
Publishers, Moscow (1989) (in Russian). 

15. G. 1. Marchuk, Methods of Numerical Mathematics. 
Springer, New York (1975). 


